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Abstract: The use of low cost imaging devices for the purpose of agricultural monitoring provides1

advantages to large scale indoor agricultural operations. These devices permit the use of imaging2

techniques for the acquisition of physiological indicators useful for the determination of overall3

plant health. As resources become scarce, the need to minimize the use of agricultural inputs,4

such as water, will increase. This study presents the design of an efficient-low-cost solution for5

determining the relative water content of vegetation, experimental implementation, and analysis.6

The experimental results show the potential capability of using low cost hardware with open source7

software for the purpose of determining the relative water content of individual plant leaves. The8

results of performing a linear regression on extracted polarization and texture based features shows a9

correlation with the relative water content of an Epipremnum Aureum plant.10

Keywords: Polarization; Stokes Vector; Texture; Grey Level Co-Occurrence Matrix; Relative Water11

Content; Linear Regression; Vegetation; Epipremnum Aureum12

0. Introduction13

Implementation of large scale indoor precision agriculture systems will become more prevalent14

as resources considered as inputs to these systems become increasingly scarce. Monitoring the state of15

these systems will be crucial for minimizing inputs to the system while maximizing its outputs.16

The reduced cost of electronic imaging devices has lowered the barrier of entry into the field of17

exploratory image analysis and data collection for precision agricultural applications. As large scale18

deployments of sensors are often costly or lacking spatial temporal resolution, investigations into the19

use of micro-aerial vehicles, or MAVs, is being investigated by [1] for a reduction in footprint of the20

physical hardware deployment. Recently Panda et al [2] built upon the work of Tian [3] to increase21

the reliability of wireless sensor networks at low cost for indoor precision agriculture by including22

redundant data transfer paths from the sensors to their respective gateways. The importance of open23

source software and hardware for these types of sensor networks is recognized by Bitella et al. in [4]24

for the monitoring of soil water content. This change in system design allows for a broader range of25

development from independent researchers working towards the goals of sustainable agriculture at26

a reduced cost. The development of low cost, open source sensors and technologies for monitoring27

precision agriculture systems allows for expanded capabilities, increased reliability, and widespread28

use.29

A large variety of data types can be utilized to help provide insight into vegetative health and30

potential production yield. Photosynthesis is a process by which all land plants take in water and31

carbon dioxide to create energy and oxygen. This energy is utilized for plant growth and ultimately for32
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human food production. The more photosynthetic activity occurring within a plant, the more growth33

it can undergo. Water is fundamental to this process.34

As a plant enters a water stressed state, its stomata begin to close. The stomata is one of the main35

barriers in the process of transpiration and closes in order to reduce excess water loss during a period36

of stress. Since the plant receives more radiation than it requires during these periods, it is forced to37

dissipate the energy as heat. This phenomenon was one of the first used to provide an estimate of the38

photosynthetic activity within plants. Using heat as an indicator for plant health is limited due to its39

influence on outside forces and changes to photosynthetic pigments in water stressed crops.40

Narrowband spectral responses have been used as an indication of plant health based on the41

reflectance from plant canopies at various wavelengths. These techniques rely on the scattering and42

absorption mechanisms of surfaces from incident radiation and are less prone to error than thermal43

sensors. Often times the use of drones or other aerial monitoring devices are used to provide larger44

scale coverage outdoors. Recent studies have used spectral imaging techniques for the purposes of45

detecting viruses in plants by observing the polarized reflectance from their leaves [5], plant species46

discrimination [6][7][8], determining the relative water content of leaves using polarized reflectance47

[9] as well the general properties of leaf reflectance, transmittance and absorption[10][11]. Popular48

remote sensing vegetative indexes such as the Near Density Vegetation Index (NDVI) have been49

shown to be effective for determining the photosynthetic activity of vegetation be leveraging various50

spectral responses in the infrared and near infrared regions of light. Although spectral imaging51

techniques have higher degrees of accuracy, they are often cost prohibitive for smaller outdoor farms,52

and developing aerial monitoring mechanisms for large indoor agricultural operations is currently still53

being investigated. Application of low cost imaging devices for the monitoring of indoor agricultural54

operations allows for techniques in the visible and infrared range to be implemented at a larger scale.55

These devices can be mounted throughout a facility and positioned at a constant location or on a56

group of MAVs. Using Grey Level Co-Occurrence Matrices for determining the texture features of57

a given scene can easily be implemented using popular open source programming libraries such as58

scikit-image. This technique can therefore be implemented with any device that can capture a greyscale59

digital image and a computer running Python. GLCMs have been used in remote sensing for the60

purpose of classifying various types of terrain [12].61

As reflectance models have developed from smooth ideal surfaces to complex multi-faceted62

bidirectional reflectance functions, polarization has also begun to be investigated as a property of63

these materials physiological and surface makeup. Light sources in different spectral ranges also play64

an important role in the polarization response of a material, but it can be shown that unpolarized65

input light can lead to a mathematically reduced polarization form, the polarizance response. This66

mathematical reduction simplifies data acquisition as only one linear polarizer is required to capture67

the details of a materials polarizance.68

Previous techniques demonstrated in [13][14] involve the use of complex, expensive systems for69

calculating and performing a full analysis of the polarization properties of light as well as polarization70

response of materials. A simplified measurement scheme is presented here for a reduction in the71

overall number of required measurements, while still gathering important information about the72

materials’ polarization response.73

The consequent reduction in hardware cost and use of open source software for acquiring potential74

physiological indicators permits future infrastructure expansion using common technology stacks,75

such as Linux and Apache.76

As the scarcity of fresh water increases, the need for preciously applying water as an input into77

crop production will also increase. Regions which generally have a lack of resources already, such78

as densely populated cities, have already begun investigating and implementing indoor agricultural79

production of crops. These types of controlled and monitored growing operations allow for the precise80

application of agricultural inputs and require large scale monitoring solutions.81



Version May 22, 2019 submitted to Sensors 3 of 16

The goal of this investigative study was to design and implement an efficient-low-cost polarization82

and texture based imaging technique for detecting the relative water content of vegetation.83

1. Materials and Methods84

The design of this experiment was intended to make the capture of polarization and texture based85

features simple and effective for modeling the relationship between extracted features and the relative86

water content of each sample. Individual leaves taken from an epipremnum aureum, or devils ivy87

plant as it is commonly called, were used as samples in this experiment. This particular species was88

used as it is commonly found and accessible. Overall thirty-four leaves were removed from their host89

and analyzed.90

A digital microscope was used as a detector for measuring the light irradiated from the surface91

of each sample. This provided a larger field of view than traditional point detectors, and allowed for92

performing texture analysis on the surface properties of the leaves.93

A single linear polarizer rotated to various positions in front of the detector was required to94

take the polarization measurements. From these images a simplified linear polarization response was95

calculated.96

The images acquired by this detector were split into individual red, green, and blue color channels97

to analyze the potential spectral characteristics of the samples as well. Both polarization and texture98

features were extracted separately on each channel.99

The extracted texture features used a Grey Level Co-Occurrence Matrix which describes the100

relationship between neighboring grey level pixel intensities in an image. Quantitive parameters101

can be extracted from this matrix to determine the texture features for a given sample through this102

technique.103

Principal Component Analysis was then used for feature reduction and a linear regression was104

performed on the data. Statistical analysis was used to validate the model.105

1.1. Imaging Techniques106

Fresenels’ equations dictate the behavior of transmitted and reflected electromagnetic waves107

from surfaces. It has been shown previously that at the Brewster angle all energy in the direction108

parallel to the plane of incidence is completely transmitted and the beam of reflected light is completely109

polarized in the perpendicular direction. This effect produces a high amount of polarization for smooth,110

ideal surfaces and is generally denoted as the specular portion of reflection. Diffuse reflection can be111

regarded as any reflection that is not specular. Previous studies have shown this portion of reflected112

light to be unpolarized [15], although more modern interpretations allow for polarization to be present113

in the diffuse portion of non ideal surfaces and useful for staging diseases[16] and surface orientation114

[11][17]. Since the specular component contains a majority of the polarization information, it was the115

primary focus of this investigation.116

Two experimental setups were designed to capture the reflection of light from the leaves’ surfaces117

in the specular and diffuse directions. The Brewster angle was determined to be approximately 55118

degrees and was used for positioning the camera in the specular experiment. For the diffuse experiment119

the camera and polarizer were repositioned to be orthogonal to the plane of the sample, or 0 degrees.120

The experimental setup is shown for the specular detector orientation in Figure 1.121

Surfaces which have more diffuse scattering are often considered to be rough when compared122

to smoother specular surfaces. Texture was therefore also considered by applying post processing123

software techniques.124

A linear polarizer, digital microscope, and broadband light source formed the experimental setup.125

The broadband light source was found to have a low polarization, less than one percent, and was126

considered as an unpolarized input. An optical table was used to secure the components in place while127

the leaves were held in a vice, attached to a flat surface. Note the digital microscope was positioned as128

close as possible to the linear polarizer without being disturbed by the rotation of the polarizer.129
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Figure 1. The experimental setup for capturing the specular reflection of light from each leaf sample’s
surface. A single polarizing lens is placed in front of a digital microscope to record the polarization
measurements.

The polarization features were extracted by rotating the linear polarizer in front of the detector and130

images acquired were used for the polarization and texture analysis in this study. Each samples relative131

water content was determined independently using previously established techniques, described later.132

1.1.1. RGB Image Analysis133

A greyscale image is comprised of a multi-dimensional array of greylevel intensity values that134

range from 0 to 255. The shape of these arrays corresponds to the height and width of a given image in135

pixels.136

Most digital cameras today are able to record color images as well. The color in images achieved137

by using a filter pattern arranged atop the image sensor which records the intensity of light through a138

filter sensitive to each of the primary colors, or spectral bands, in the red, green and blue regions of the139

visible light spectrum. Color images are stored as three multi-dimensional arrays containing the values140

of the red, green, and blue intensities for each pixel. Each color channel therefore can be represented141

as a greyscale image matrix of a pixel’s filtered intensities and treated similarly during processing.142

Texture and polarization features were extracted independently from each of these individual channels.143

1.1.2. Polarization Measurements144

The polarization response of a material in its most general form is described by a 4x4 matrix145

known as the Mueller Matrix and is often denoted as M. Incident light of a known polarization state146

can be directed at the material in order to create a polarized output beam or response. This interaction147

is represented as148

Sout =


S0out
S1out
S2out
S3out

 = MSin =


m00 m01 m02 m03

m10 m11 m12 m13

m20 m21 m22 m23

m30 m31 m32 m33




S0in
S1in
S2in
S3in

 (1)

The input Sin and output light Sout beam are formulated as 4x1 Stokes vectors which describe149

the overall amount of polarization the light beam contains as well as the relative strength of the150

polarization in orthogonal directions [13]. These directions are usually picked to be at 0, 45, 90 and 135151

degrees for the linearly polarized portion of the light and in a right and left circular direction for the152

circular polarization properties. The circular components of the light beam are often left out of the153

discussion for simplification and data reduction [14]. Other studies have justified this reduction of154

dimensionality from the fact that most materials in nature have not been found to contain significant155

amounts of circular polarization [18].156
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In this reduced form, the dimension of the Mueller Matrix becomes 3x3 whereas the Stokes157

parameters are represented as 3x1 vectors. S3 is therefore removed from the equations while S1158

describes the perpendicular and parallel components of polarization relative to the materials surface,159

and the S2 component describes the polarization difference between 45 and 135 degrees. When160

unpolarized light is applied as the input vector161

Sout =

m00 m01 m02

m10 m11 m12

m20 m21 m22


1

0
0

 =

m00

m10

m20

 (2)

into this equation, the output polarization state is equal to the first column of the Mueller matrix.162

This column is said to be the polarizance of a material which is the property by which unpolarized163

input light becomes polarized by interaction with a sample [13]. The polarizance of a material is164

described165

P(M) =

√
m10

2 + m202

m00
(3)

Although most outdoor skylight is partially polarized the controlled environment of the indoor166

experiment allowed for the use of a beam of light that was nearly completely unpolarized (<1 percent).167

The reduction in the Mueller Matrix created by utilizing unpolarized light as the input allowed for168

simplification in the experimental design for collecting the polarization properties of each sample.169

Capturing a full Mueller Matrix is a time intensive process that involves configuring polarization filters170

on the input light source as well as in front of the detector. Light measuring polarimeters can therefore171

be used to determine a partial polarization response of a material instead of needing a more complex172

Mueller matrix polarimeter. The polarizance property can be captured using a single linear polarizer173

in front of the detector which is rotated into four different positions. Under these conditions, these four174

measurements can be used to calculate the output Stokes parameters, which as shown, are the same as175

the first column of the Mueller matrix and therefore a measure of the sample’s linear polarizance or176

reduced polarizance response.177

These polarizance values can also be calculated as

P =

P0

P1

P2

 =

pH + pV
pH − pV
pP − pM

 watts
m2 (4)

where pH , pV , pP and pM represent flux measurements recorded through filters that extinguish178

orthogonal polarization states. This is a discrete polarimetric measurement and calculation.179

These parameters can be normalized by dividing by the total intensity of the orthogonal images,180

P1

P0
=

pH − pV
pH + pV

(5)

P2

P0
=

pP − pM
pP + pM

(6)

Note that P0 = pH + pV = pP + pM = pR + pL as each element represents the flux which passes181

through each orthogonal pair of linear polarizers. The normalized values are denoted P1 and P2182

throughout the rest of this experiment.183
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Hence by recording the output polarization state of the unpolarized input through four linear184

polarizer positions, it is possible to capture information on the polarization response of the material. It185

is also important to note that a material must have polarizing properties for a polarizance response to186

occur.187

Images were acquired for each sample with the digital microscope placed behind a linear polarizer188

and oriented at 0, 45, 90 and 135 degrees in order to acquire measurements for pH , pP, pV and pM.189

Each image was converted into a flattened array and the pixels with a value of 255 were removed from190

the dataset. At the highest intensity value, or the brightest points in the image, there is a risk of over191

saturation since the imaging device is limited to a maximum range. A recorded pixel value of 255192

represents intensities that are equal to 255, or greater than this value since after this point, the sensor193

becomes saturated. This causes a skew in the data which is removed by the process of thresholding194

at this level. The same pixels were removed in each pair of orthogonal images. Due to areas of over195

saturation in the image, shadowing is a problem which also skews image data. In effect when certain196

pixels within an image are oversaturated, other pixels will be shadowed. Filtering pixels which were 0197

for either image of the pair were therefore also removed to minimize this effect. These images were198

acquired in both the diffuse and specular direction for the reflected light. For each pixel in the red,199

green, and blue color channels, P1 and P2 parameters were calculated. The average polarizance values200

and standard deviation were calculated for all pixels in the image and added to the feature array for201

the sample.202

1.1.3. Texture Analysis203

The multidimensional pixel arrays of an image contain information for classifying the texture204

of a given scene. A Grey Level Co-Occurrence Matrix (GLCM) is a tool for classifying the texture of205

an image. By inspecting the grey level intensity for a given sample of adjacent pixels’ relationships206

can be quantified as to the texture characteristics for that particular sample. These characteristics207

have previously been used for classifying various types of landscape [19][12] from overhead drone208

and satellite imagery. This quantitative measure of texture can be extracted from images and used as209

features of a dataset. The three groups of texture parameters which can be derived from a GLCM are210

contrast, statistical and orderliness.211

A GLCM is able to quantify the spatial frequency distribution of grey level pixel intensity pairs212

for an image. A relationship between a reference pixel and neighbor is set a priori to determine the213

direction for grey level comparison. This angular relationship is chosen in multiples of either 0 or 45214

degrees. Common GLCM spatial relationships are 0, 45, 90, and 135 degrees as shown in Figure 2.215

Figure 2. Each reference pixel is analyzed with respect to a given direction under inspection. For a
given direction the grey level value of the pixel being pointed to is recorded. These directions are
averaged out to remove spatial considerations for the texture quantification.

In order to quantify a texture in a rotationally consistent fashion, all four relationships are usually216

calculated and averaged together in determining the overall GLCM matrix. By measuring all four of217
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these directionality’s and averaging the GLCM features, the spatial directionality characteristic of the218

GLCM is removed and the texture is the same viewed from any direction. The GLCM has a size of219

NxN where N is the discrete quantized levels of the captured grey scale image. A single relationship220

Co-Occurrence matrix is formulated such that,221

Φij(4x,4y) =
n

∑
x=0

m

∑
y=0

{
1, i f I(x, y) = i and I(x +4x, y +4y) = j

0, otherwise
(7)

where I(x, y) is an nxm image and4x,4y represent the predefined offset of the grey level pixel222

neighbor intensity relationship (i,j). Being defined as referencing one pixel to its neighbor to the right223

(0 degrees) the GLCM matrix is formulated as such, Non symmetrical GLCMs should be symmetrized224

by adding each to its transpose,225

Φ
′
= Φ + ΦT (8)

Normalizing the frequency to one by dividing the matrix by the sum of all its elements results in226

a probability distribution for each grey level pixel pair.227

P =
Φ
′

∑N−1
i=0 ∑N−1

j=0 Φ
′ (9)

Features can then be extracted from the formed matrix for the purpose of defining single228

quantitative values for texture. These features are known as Haralick features and generally fall229

into 3 distinct feature categories; Contrast, Statistical and measures of Orderliness.230

Contrast measures are defined by weights that increase or decrease with distance from the GLCM231

diagonal. These weights can be linear, exponential, etc. For the N x N dimensional GLCM matrix the232

N - 1 term in the first row or column represents pixel relationships that are of the greatest intensity233

difference.234

Contrast, for example, has weights that increase exponentially away from the diagonal. It is235

calculated as236

Contrast =
N−1

∑
i=0

N−1

∑
j=0

(i− j)2Pij (10)

While dissimilarity is a measure of contrast with weights that increase linearly away from the237

diagonal238

Diss =
N−1

∑
i=0

N−1

∑
j=0
|i− j|Pij (11)

Statistical measures utilize each individual element of the GLCM as weights to determine the239

moments of the probability distribution matrix. No measures from this category were evaluated in240

this study.241

Measures of orderliness are quantified by the amount of entropy and energy within an image.242

Entropy is a measure of randomness in a system. In thermodynamics, it is the recorded heat lost when243

a reaction occurs; a measure of disorder. Energy is a measure of useful work that can occur due to the244

nonrandom nature of the energy in a system. So for an image, higher randomness in the grey level245
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tones of neighboring pixels results in a higher amount of entropy for the GLCM matrix associated246

with the image. The angular second moment (ASM) describes the amount of “inertia” around a pixel247

neighbor relationship and is defined as,248

ASM =
N−1

∑
i=0

N−1

∑
j=0

P2
ij (12)

The square root of the ASM results in the energy of the system249

Energy =
√

ASM (13)

For perfectly uniform textures the energy will be at a maximum of 1 [20]. This experiment250

captured the energy and correlation features of each individual red, green and blue image channel251

by averaging the GLCM over 0, 45, 90, and 135 degree relationships. Twenty image samples, each252

measuring 75 by 75 pixels, were extracted from each samples H aligned polarization filter. Texture253

was extracted from each color channel. The average of each samples texture measure were calculated254

and added to the feature array for each sample. Further measures could also be extracted for further255

analysis, although it is recommended that texture features are selected from each of the three categories256

mentioned.257

1.2. Relative Water Content258

A variety of parameters have been investigated to understand the physiological condition of259

plants such as relative water content, water stress, chlorophyll content, etc. Calculating the relative260

water content is a process that is time consuming and slow. It involves a destructive measurement261

of each leaf by removing it from the plant and performing a series of weight measurements. These262

measurements involve taking the freshly cut weight of the leaf, a turgid weight, and a dry weight.263

The general procedure for determining the relative water content of individual plant leaves has been264

discussed in [21] and in brief summary is as follows265

1. Remove leaf from host plant leaving approximately 2 cm of petiole266

2. Weigh leaf to acquire the Fresh Leaf Weight (FW)267

3. Place leaf petiole in solution of distilled water and CaCl2 at 2mM for at least 8 hours268

4. Weigh leaf to acquire Turgid Weight (TW)269

5. Place leaf in an oven at 60◦C for 4 days270

6. Weigh leaf to acquire the Dry Weight (DW)271

The relative water content can then be calculated as a percentage,272

RWC =
FW − DW
TW − DW

x100 (14)

Note that the scale used for weighing needs to have at least 4 decimal places to ensure the accuracy273

of the measurements. Drying times and artificial hydration times can vary with species and oven274

temperature. The process of acquiring the relative water content of leaves is destructive and requires275

several days to get the required measurements. A goal of this experiment was to create a simple276

effective measurement for determining the RWC of a plant without destructively removing its leaves277

and reducing the time it takes to get experimental results. The features extracted from the images were278

investigated and modeled against the RWC measurements acquired. It has been noted that a plant’s279

physiology experiences changes in relation to the amount of RWC a plant has. It is noted that280

This study mainly focused on leaves which were in the 90 - 100 % range and were experiencing281

the closing of their stomata as described in Table 1. “An increase in reflectance. . . is not directly related282
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Relative Water Content (%) Plant Physiological Response

90-100 closing of the stomata, reduction of cellular expansion and growth
80-90 tissue composition change, altered rates of photosynthesis and respiration
<80 ceasing of photosynthesis

Table 1. Plant physiological responses to detected relative water content levels.

to water content but indirectly, since a decrease in water content can lead to an increase in internal leaf283

air space or cell breakdown which may increase reflectance and decrease transmittance [22]”.284

This increase in internal air space leads to multiple scattering at air wax boundaries, and creates285

differences in the reflection, transmission and absorption of light, and the P1 and P2 polarizance286

parameters of the response.287

Field measurements of the physiological properties of plants are time consuming and error prone.288

It is therefore beneficial to pursue solutions that quantify these metrics in large area field measurements.289

1.2.1. Principal Component Analysis290

When dealing with high dimensionality datasets, it is important to asses the correlation between291

each of the features so as to not have duplicate information. As datasets also grow larger it becomes292

more difficult to visualize the data and experimental results, and the time it takes to compute the293

experimental results increases. Principal Component Analysis is a technique which aims to reduce the294

dimensionality of a given dataset while maintaining the characteristics of each feature that provide the295

least amount of correlation and the highest amount of explained variance. Prior to performing PCA,296

features are usually normalized to have a variance of one and a mean of zero allowing for features on297

different scales to be viewed equally during the model development. After normalization, eigenvalue298

decomposition is performed on each of the feature sets to maximize the variance of each principal299

component. 12 features were extracted from each sample’s images, normalized, and reduced into two300

principal components. This reduction allowed for ease of analysis in three dimensional space.301

1.2.2. Linear Regression302

A multivariate ordinary least squares regression was performed on the two principal components303

and their samples corresponding measured RWC. This led to an understanding of the relationship304

between the acquired feature vectors of each sample and how they relate to the relative water content.305

Linear regression analysis has long been in use in the field of statistical and supervised learning.306

They provide the ability to predict quantitative responses, Y, when X is a set of inputs. The assumption307

when using this technique is that the relationship between these two variables is linear, and of general308

form309

Y = β0 + β1X1 + β2X2 (15)

where β0, β1, and β2 are parameters that are calculated using a set of input data and represent310

the intercept and slope of the regression. Once trained, this model can predict future output values311

for a given input. When given a set of observations, β0, β1, and β2 are calculated in order to have a312

closeness between the predicted line and the observed data. A common measure of this closeness is313

the least squares error. The residual, e, for a given set of observations is calculated as314

ei = yi − ŷi (16)

where ŷi are the predicted outputs. These residuals can be used to calculate the Residual Sum of315

Squares RSS, or the amount of variation left unexplained after performing the regression. It is316
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RSS = e1
2 + e2

2 + · · · + en
2 (17)

where n is the number of observations in a dataset.317

The Total Sum of Squares is the measure of how much variability exists within the data before the318

regression has been performed. It is defined as319

TSS =
n

∑
i=0

(yi − ȳ)2 (18)

where ȳ is the mean. Using the RSS and TSS allows for determining the accuracy within the320

model by calculating the R2, or the "proportion of variability in Y that can be explained by X". It is321

defined as322

R2 =
TSS− RSS

TSS
= 1− RSS

TSS
(19)

For a given application it is difficult to determine what a ’good’ R2 score is, although it has been323

noted that in biological applications there can be a great deal of unexplained variance, sometimes even324

less than 0.1 [23]. In these experiments, linear regression was utilized to correlate the relative water325

content of the devils Ivy plant leaves with the first and second principal components derived from326

texture and polarization characteristics. R2 was used to gauge the accuracy of the results along with327

other statistical measures.328

2. Results329

The feature extraction was performed using Python v3.6.4, OpenCV2, scikit-image v0.14.2, and330

scikit-learn v0.20.3 packages. The raw images acquired during the experiment were placed into a331

sample directory along with an rwc.dat file which contained the relative water content for the sample.332

As these features and data were extracted for each sample they were written to a csv file for storage333

and future analysis. As more features are extracted from each sample, the processing power required334

by a computer increases. Writing the dataset to a csv file saves on processing time when analyzing335

the data which were then analyzed and plotted using the pandas, statsmodel and seaborn python336

packages.337

Prior to performing PCA on the feature set to reduce the overall dimensionality, a correlation338

matrix was used to visualize the correlation between each feature. The correlation matrix is shown in339

Figure 3. In the ideal case, uncorrelated features are used to reduce the redundant information in the340

dataset. The diagonal of a correlation matrix represents the amount of correlation each feature has341

with itself, and is always one. All other feature combinations are shown to be either positively are342

negatively related. Features from the texture category are shown to be highly correlated to one another.343

For the specular H image acquired, the RGB channel analysis had little impact on texture as344

the various color channels showed the same amount of correlation for similar parameters under345

consideration.346

This representation allows for insight into how separate RGB channel analysis performs in that347

texture characteristics are not as affected by color separation for the H filtered image, although in the V348

filtered image there is more of a distinction. This aligns with previous reasoning that the V filtered349

image should include the least amount of polarization as it is filtering it out. This is due to there being350

less white light in the image and the quantified texture is derived solely from the leaves’ surface.351

Similarly polarization features were more highly correlated with one another, although RGB352

channel analysis shows more of a distinction between the various polarization features for each353
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Figure 3. A correlation matrix showing the relationship between each feature accross the input feature
set. Note that texture and polarization features are the least correlated, while RGB channel analysis
appears to have no effect on the texture analysis.

channel. This agrees with the premise that polarization is a frequency dependent phenomenon.354

Polarization filters are typically specified for a given frequency response range or broadband response,355

while equations generally are designed for single frequency properties. Using the individual color356

channels of the image sensor allows for a more bandlimited response when compared to its grey357

level counterpart. Correlation between texture and polarization filters showed the lowest value and358

therefore provide a good basis for principal component creation.359

The use of features from each of these categories provided insight into the light interaction at the360

surface of the leaves and the different results produced from each feature set. Principal component361

analysis was performed on each component resulting in two principal components made of of each362

feature and weighted such that the variance explained of each feature for a given component was363

maximized.364

These two principal components accounted for 74.75 percent of the total variance. A linear365

regression was fit to these two principal components and a linear regression performed for each366

samples’ measured relative water content.367

Due to the reduction of feature data into two components, the data could be more easily visualized368

on a three dimensional graph. The two principle components were graphed in the x,y plane and the z369

axis was assigned to the RWC value of each sample with these values plotted as a scatter plot. A mesh370

grid was created to cover a range of inputs for the samples that ranged from the lowest to highest371

value of each component. This array of values was then input to the fit linear regression equation and372

plotted as a plane. The resulting regression is shown in Figure 4 as a plane plotted against each PC.373

The results of the statistical analysis for this regression showed an R2 of 0.409 and an adjusted R2
374

of 0.371. An adjusted R2 score is used when there are multiple features as input to the regression and375

accounts for the arbitrary increase in R2 as more features are added to the model. The adjusted R2 is376

penalized for additional features added.377
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Figure 4. A 3d representation of the relationship between the two principal components and the
relative water content of each sample. The solution plane is shown for the calculated multiple linear
regression.
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Dep. Variable: RWC R-squared: 0.409
Model: OLS Adj. R-squared: 0.371
Method: Least Squares F-statistic: 10.75
Date: Tue, 09 Apr 2019 Prob (F-statistic): 0.000285
Time: 21:35:17 Log-Likelihood: -36.903
No. Observations: 34 AIC: 79.81
Df Residuals: 31 BIC: 84.39
Df Model: 2

coef std err t P>|t| [0.025 0.975]

const 98.0273 0.129 761.878 0.000 97.765 98.290
PC1 0.2170 0.055 3.926 0.000 0.104 0.330
PC2 0.1684 0.068 2.466 0.019 0.029 0.308

Table 2. Statistical analysis results for the linear model.

The statistical analysis of the data and regression can be found in Table 2. The parameters for the378

linear equation that result can be shown as the solution to a plane such that379

Y = 98.0273 + 0.2170X1 + 0.1684X2 (20)

where X1 is PC1 and X2 is PC2.380

The F statistic relates the mean sum of squares to the mean error sum of squares. It is a test of381

the regression model under the null hypothesis. A low F statistic probability shows the probability382

of the parameters of the model being zero is low and the regression equation is valid for fitting the383

model. This means that the models’ independent variables are not purely random with respect to the384

dependent variable. The constant coefficient shows what the y intercept would be if both PC1 and385

PC2, were zero. This model could benefit from additional samples and a more varied RWC, but due to386

experimental limitations, samples at lower RWC were not available. For each parameter the STD error387

is low and shows that each coefficient has a high level of accuracy. The P value is a common statistical388

measure that asserts how much confidence there can be in the results. Generally a P value of less than389

0.05 is considered statistically accurate and there the measurements of this experiment can also be390

concluded to be statistically accurate.391

These results show that there is a relationship between the relative water content of devils392

ivy leaves with the polarization and texture response captured by images during the course of the393

experiment. Further investigation is needed into a larger range of RWC measurements to validate394

further this preliminary study. It has been shown that with consumer grade electronics, it is possible395

to derive features from organic samples for processing and analysis. As more data is acquired, more396

advanced models could be developed. Data for other species of vegetation should also be investigated397

for varying curves.398

3. Discussion399

Although high precision narrowband spectral sensors are still cost prohibitive for many operations,400

low cost imaging devices can be useful for agricultural monitoring applications. As this study shows,401

it is possible to use polarization and texture based imaging techniques for extracting health indicators402

from vegetation.403

As plants experience water stress their physiological and structural makeup change. These404

changes affect the scattering of incident radiation and have been shown to provide insight into the405

overall health of the plant. Previously, spectral signatures have been used to determine the RWC of406

vegetation [24] and determining the water status of canopies continues to be a goal of remote sensing407

research. As these studies have progressed and produced results, the implementation of these ideas408
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and technologies on other areas of agricultural production has grown. Aerial sensors attached to409

Micro Aerial Vehicles (MAVs) [1] have been implemented to collect data for monitoring greenhouse410

production of crops for reducing the overall cost of these systems. Open source hardware has been411

used to build sensor networks for collecting soil moisture content at a low cost which has lowered the412

barrier for implementing these technologies at different scales.413

The polarization response of plants has extended models that previously focused solely on414

the reflected irradiance from surfaces [25]. It was previously shown that the polarization of the415

diffuse portion of irradiance from a leafs’ surface provides less information than the specular portion416

of reflection [15]. Although the diffuse portion of polarization have been shown to be useful for417

disease staging in other areas, this study shows that more information is held in the specular portion418

of polarization. The sensitivity of the imaging device also has an impact on the ability to detect419

polarization in the diffuse portion of reflectance.420

Many of these studies require the use of lasers at specific wavelengths for measuring and421

calculating a vegetative index. Use of this type of radiation requires multiple lenses for delivery422

and measurement. Application of these techniques are cost prohibitive. The experimental setup423

described here provides an overall reduction to the image processing chain and results in a simplified424

polarizance response which can be measured using a single lens.425

Textual studies from satellites have been used for determining weak portions of levees and426

assessing environmental impact scenarios [12]. These texture measurements are useful as they can be427

calculated after the image has been captured. This allows for the image acquisition phase to remain428

as simple as possible, while maximizing the features extracted from a given scene. It was shown429

that the texture features and polarization features acquired in this study are weakly correlated, and430

therefore serve as good candidates for principal component analysis as they do not contain redundant431

information. A combination of polarization and texture features provided the best results.432

Due to the effect of growth stage on leaf scattering a more controlled experiment would entail433

recording the growth stage of each plant while performing this study. An expanded dataset should then434

be acquired to address the RWC of various species across a wider range of water stressed states. Water435

application would be closely monitored and controlled throughout the experiment. With this expanded436

dataset, more generalized models could then be established for practical application. Additional sensor437

types could be experimented with as well as the collection of additional physiological indicators used438

to determine plant health.439

The use of open source software allows for these experimental results to be reproduced, shared,440

and expanded upon using a set of community standards. The portability of Python makes it ideal441

for experimental use as most computers today have Python installed. All original samples and code442

are available on Github. This combined with cost effective hardware allows for scalable and robust443

agricultural monitoring capabilities for the future.444

As more investigation is performed across different species, large scale implementation of these445

sensors indoors becomes feasible for the precise application of water. This will be increasingly446

important as fresh water becomes scarce. Additional physiological properties such as chlorophyll447

composition and growth stage could also be investigated for accurately monitoring agricultural plant448

health, thereby promoting the long term goal of reducing agricultural inputs while maximizing outputs449

in precision agricultural.450

4. Conclusion451

During the course of this study an efficient-low-cost sensor for determining the relative water452

content of vegetation was designed, implemented, and tested. The design provided a simplified image453

acquisition approach to reduce the number of hardware components needed and reduce cost. Post454

processing of the acquired images from the experiment produced texture and polarization features for455

each individual leaf sample. These features were linearly correlated with the relative water content of456

the individual samples.457
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The use of open source software in this study allows for contribution by other researchers458

interested in development of precision agriculture and open data access in this field. Future459

experiments should utilize open source hardware to better understand the imaging sensor design and460

characteristics, a more controlled growing environment to more closely monitor the effects of water461

stress, different physiological indicators such as chlorophyll, fully automated polarization acquisition462

for improved efficiency, and a multi-sensor node deployment.463

Collecting datasets of physiological indicators and imaging data for a variety of vegetative species464

will be needed to provide large scale insight into the health of ecosystems and advance the long term465

goals of precision agriculture. Natural resources are becoming increasingly scarce, and the need for466

minimizing the inputs to agricultural systems while maximizing their output, while monitoring the467

overall state of the Earth’s ecosystem, will continue to be of importance.468
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